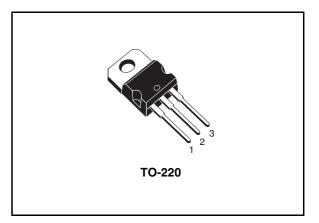


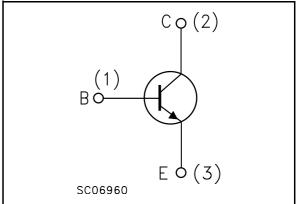
ST13005

High voltage fast-switching NPN power transistor

Features


- Low spread of dynamic parameters
- Minimum lot-to-lot spread for reliable operation
- Very high switching speed

Applications


- Electronic ballast for fluorescent lighting
- Switch mode power supplies

Description

The device is manufactured using high voltage multi-epitaxial planar technology for high switching speeds and medium voltage capability. It uses a cellular emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

Figure 1. Internal schematic diagram

Table 1	_	Device	summary
		DCVICC	Summary

Order code	Marking ⁽¹⁾	Package	Packaging
ST13005	13005A	TO-220	Tube
ST13005	13005B	TO-220	Tube

1. Product is pre-selected in DC current gain (group A and group B). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery details.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	5
3	Test circuit	7
4	Package mechanical data	8
5	Revision history1	1

1 Electrical ratings

Table 2.	Absolute maximum rating

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{BE} = 0)	700	V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	400	V
V _{EBO}	Emitter-base voltage (I _C = 0)	9	V
Ι _C	Collector current	4	А
I _{CM}	Collector peak current (t _P < 5ms)	8	А
۱ _B	Base current	2	А
I _{BM}	Base peak current (t _P < 5ms)	4	А
P _{tot}	Total dissipation at $T_c = 25^{\circ}C$	75	W
T _{stg}	Storage temperature	-65 to 150	°C
Τ _J	Max. operating junction temperature	150	°C

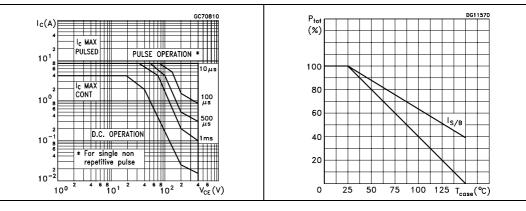
2 Electrical characteristics

 $(T_{case} = 25^{\circ}C \text{ unless otherwise specified})$

Symbol Parameter Test Conditions Min. Typ. Max. Unit l_{CES} Collector cut-off current ($v_{BE} = 0$) $V_{CE} = 700 \lor$ $v_{CE} = 700 \lor$ $T_{C} = 125^{\circ}$ C I_{CS} I_{SS}	Table 5.	Electrical characteristics						
	Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
$\frac{ V_{BE} ^{-1}}{ V_{CE}(sus) ^{(1)}} = \frac{ V_{BE} ^{-1}}{ V_{CE} ^{-1}} = \frac{ V_{CE} ^{-1}}{ V_{CE} ^{-1}} = \frac{ V_{CE} ^{-1}}{ V_{CE} ^{-1}} = \frac{ V_{CE} ^{-1}}{ V_{CE}(sus) ^{(1)}} = \frac{ V_{CE} ^{-1}}{ V_{CE} ^{-1}} = V_{CE$	loss	Collector cut-off current					1	mA
$\frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{1}{1$	-0E3	(V _{BE} = 0)	V _{CE} =700 V	T _C = 125°C			5	mA
	I _{EBO}		V _{EB} = 9 V				1	mA
$\begin{split} & V_{CE(sat)}^{(1)} \begin{bmatrix} Collector-emitter \\ saturation voltage \end{bmatrix} \begin{bmatrix} I_C = 2 & A & I_B = 0.5 & A \\ I_C = 4 & A & I_B = 1 & A \end{bmatrix} \begin{bmatrix} 0.6 & V \\ 1 & V \end{bmatrix} \\ & V_{BE(sat)}^{(1)} \end{bmatrix} & Base-emitter saturation \\ voltage \end{bmatrix} \begin{bmatrix} I_C = 1 & A & I_B = 0.2 & A \\ I_C = 2 & A & I_B = 0.5 & A \end{bmatrix} \begin{bmatrix} 1.2 & V \\ 1.6 & V \end{bmatrix} \\ & I_C = 2 & A & I_B = 0.5 & A \end{bmatrix} \begin{bmatrix} 1.2 & V \\ 1.6 & V \end{bmatrix} \\ & I_C = 1 & A & V_{CE} = 5 & V \end{bmatrix} \\ & I_C = 1 & A & V_{CE} = 5 & V \end{bmatrix} \\ & I_C = 2 & A & V_{CE} = 5 & V \end{bmatrix} \\ & I_C = 2 & A & V_{CE} = 5 & V \end{bmatrix} \\ & I_C = 2 & A & V_{CE} = 5 & V \end{bmatrix} \\ & I_C = 2 & A & V_{CE} = 5 & V \end{bmatrix} \\ & I_C = 2 & A & V_{CE} = 5 & V \end{bmatrix} \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = 125 & V \\ & I_C = 1 & V_C = $	V _{CEO(sus)} ⁽¹⁾	sustaining voltage	I _C =10 mA		400			<
		Collector omitter	I _C = 1 A	I _B = 0.2 A			0.5	V
$I_{C} = 4 A \qquad I_{B} = 1 A \qquad 1 \qquad V$ $V_{BE(sat)}^{(1)} Base-emitter saturation voltage \qquad I_{C} = 1 A \qquad I_{B} = 0.2 A \\ I_{C} = 2 A \qquad I_{B} = 0.5 A \qquad 1.2 \qquad V$ $I_{C} = 2 A \qquad I_{B} = 0.5 A \qquad 1.6 \qquad V$ $I_{C} = 1 A \qquad V_{CE} = 5 V \qquad 1.6 \qquad V$ $I_{C} = 1 A \qquad V_{CE} = 5 V \qquad 1.6 \qquad V$ $Group A \qquad 15 \qquad 32 \\ Group B \qquad 27 \qquad 45 \\ I_{C} = 2 A \qquad V_{CE} = 5 V \qquad 8 \qquad 40 \qquad V$ $I_{C} = 2 A \qquad V_{CE} = 5 V \qquad 8 \qquad 40 \qquad V$	V _{CE(sat)} ⁽¹⁾		I _C = 2 A	I _B = 0.5 A			0.6	V
			$I_C = 4 A$	I _B = 1 A			1	V
$h_{FE}^{(1)(2)} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V (1)	Base-emitter saturation	I _C = 1 A	I _B = 0.2 A			1.2	V
$ \begin{array}{ccccccccccc} h_{FE}{}^{(1)(2)} & DC \mbox{ current gain} & & & & & & & & & & & & & & & & & & &$	VBE(sat)	voltage	$I_C = 2 A$	I _B = 0.5 A			1.6	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I _C = 1 A	V _{CE} = 5 V				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ь (1)(2)	DC current gain	Group A		15		32	
tsResistive loadIC = 2 AV_{CC} = 125 VtsStorage timeIB1 = - IB2 = 0.4 A1.53	"FE				27		45	
t_s Storage time $I_{B1} = -I_{B2} = 0.4 \text{ A}$ 1.5 3 µs			I _C = 2 A	V _{CE} = 5 V	8		40	
		Resistive load	I _C = 2 A	V _{CC} = 125 V				
t_f Fall time $t_p = 30 \ \mu s$ 0.2 μs	t _s	Storage time	$I_{B1} = -I_{B2} = 0$	0.4 A	1.5		3	μs
	t _f	Fall time	t _p = 30 μs			0.2		μs

Table 3. Electrical characteristics

1. Pulsed duration = 300 ms, duty cycle £1.5%


 Product is pre-selected in DC current gain (group A and group B). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery details.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Derating curve

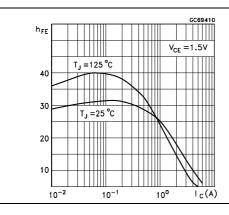


Figure 5. DC current gain

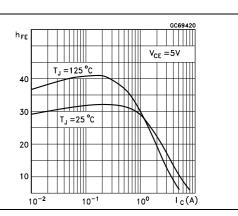


Figure 6. Collector-emitter saturation Figure 7. voltage

Base-emitter saturation voltage

57

GC70840

 $V_{Clamp} = 200 V$

 $V_{BE(off)} = -5V$

 $h_{FE} = 5$ $R_{BB} = 0 \Omega$

Figure 8. Inductive load fall time Figure 9.

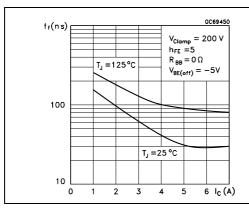
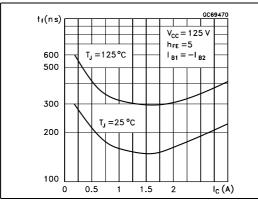
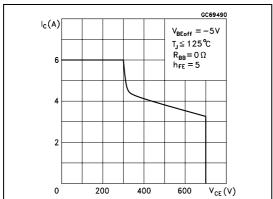
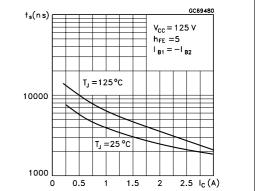




Figure 10. Resistive load fall time



1000 0 0.5 1

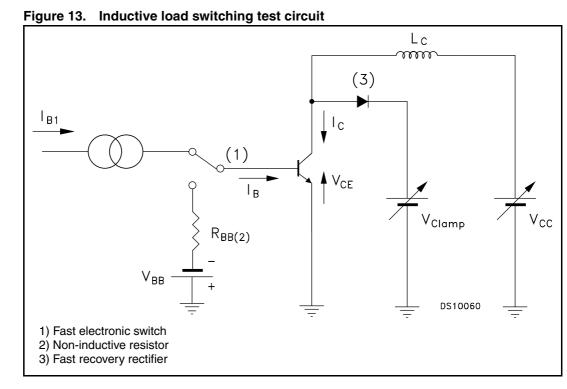
Figure 12. **Reverse biased operating** area

2 5 6 I_C(A) 1 3 4 Figure 11. Resistive load storage time

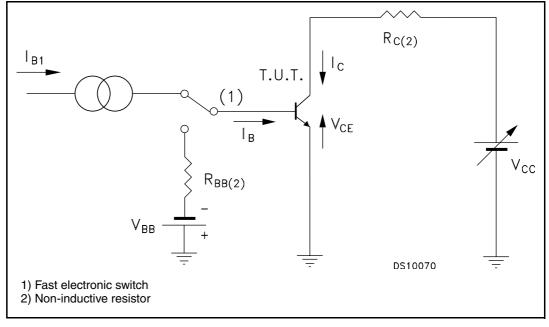
Inductive load storage time

T_J = 125 °C

T_J = 25 °C

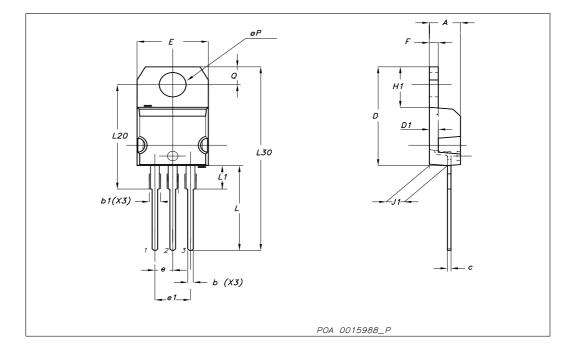

 $t_s(\mu s)$

1


0.1

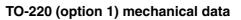
0

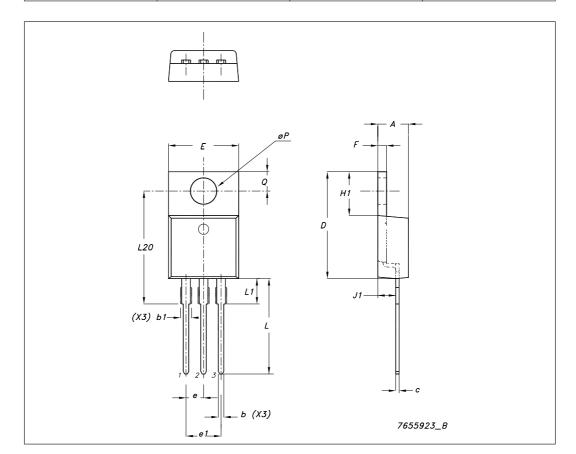
3 Test circuit


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

57


		mm			inch		
Dim	Min	Тур	Max	Min	Тур	Max	
Α	4.40		4.60	0.173		0.181	
b	0.61		0.88	0.024		0.034	
b1	1.14		1.70	0.044		0.066	
С	0.49		0.70	0.019		0.027	
D	15.25		15.75	0.6		0.62	
D1		1.27			0.050		
E	10		10.40	0.393		0.409	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
F	1.23		1.32	0.048		0.051	
H1	6.20		6.60	0.244		0.256	
J1	2.40		2.72	0.094		0.107	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L20		16.40			0.645		
L30		28.90			1.137		
ØP	3.75		3.85	0.147		0.151	
Q	2.65		2.95	0.104		0.116	



TO-220 mechanical data

Dim		mm	
Dilli	Min	Тур	Мах
А	4.47		4.67
b	0.70		0.91
b1	1.17		1.37
С	0.31		0.53
D	14.60		15.70
E	9.96		10.36
е		2.54	
e1	4.98	5.08	5.18
F	1.17		1.37
H1	6.10		6.80
J1	2.52		2.82
L	12.70		13.80
L1	3.20		3.96
L20	15.21		16.77
øP	3.73		3.94
Q	2.59		2.89

5 Revision history

Table 4. Document revision history

Date	Revision	Changes
21-Jun-2004	6	
22-Aug-2007	7	Updated mechanical data <i>on page 10</i> according to PCN APM-PWR/07/2804
12-Oct-2007	8	Updated marking in <i>Table 1</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

